library(RCurl)
## Loading required package: bitops
library(tidyverse)
## Loading tidyverse: tibble
## Loading tidyverse: tidyr
## Loading tidyverse: readr
## Loading tidyverse: purrr
## Loading tidyverse: dplyr
## Conflicts with tidy packages ----------------------------------------------
## complete(): tidyr, RCurl
## filter(): dplyr, stats
## lag(): dplyr, stats
fao_data<-read_csv(getURL("https://raw.githubusercontent.com/chrischizinski/SNR_R_Group/master/data/FAO_GlobalProduction.csv"))
names(fao_data)
## [1] "Country (Country)"
## [2] "Species (ASFIS species)"
## [3] "Production area (FAO major fishing area)"
## [4] "Production source (Detailed production source)"
## [5] "Measure (Measure)"
## [6] "1950"
## [7] "1951"
## [8] "1952"
## [9] "1953"
## [10] "1954"
## [11] "1955"
## [12] "1956"
## [13] "1957"
## [14] "1958"
## [15] "1959"
## [16] "1960"
## [17] "1961"
## [18] "1962"
## [19] "1963"
## [20] "1964"
## [21] "1965"
## [22] "1966"
## [23] "1967"
## [24] "1968"
## [25] "1969"
## [26] "1970"
## [27] "1971"
## [28] "1972"
## [29] "1973"
## [30] "1974"
## [31] "1975"
## [32] "1976"
## [33] "1977"
## [34] "1978"
## [35] "1979"
## [36] "1980"
## [37] "1981"
## [38] "1982"
## [39] "1983"
## [40] "1984"
## [41] "1985"
## [42] "1986"
## [43] "1987"
## [44] "1988"
## [45] "1989"
## [46] "1990"
## [47] "1991"
## [48] "1992"
## [49] "1993"
## [50] "1994"
## [51] "1995"
## [52] "1996"
## [53] "1997"
## [54] "1998"
## [55] "1999"
## [56] "2000"
## [57] "2001"
## [58] "2002"
## [59] "2003"
## [60] "2004"
## [61] "2005"
## [62] "2006"
## [63] "2007"
## [64] "2008"
## [65] "2009"
## [66] "2010"
## [67] "2011"
## [68] "2012"
## [69] "2013"
## [70] "2014"
fao_summary<-fao_data %>%
gather(year, prod, -(1:5)) %>%
rename(country = `Country (Country)`,
commonname = `Species (ASFIS species)`,
prod_area = `Production area (FAO major fishing area)`,
prod_source = `Production source (Detailed production source)`,
measure = `Measure (Measure)`) %>%
mutate(prod = ifelse(prod == '...', NA, prod),
prod = ifelse(prod == '0 0', 0, prod),
prod = as.numeric(prod)) %>%
filter(prod_source == "Capture production",
measure == "Quantity (tonnes)",
!is.na(prod)) %>%
mutate(inland = ifelse(grepl("Inland",prod_area),1,0),
log_prod = log(prod+1)) %>%
arrange(country, commonname, year) %>%
unite(uniq_fishery, country, commonname, remove=FALSE) %>%
group_by(country,uniq_fishery) %>%
summarise(mean_log = mean(log_prod),
CV_prod = sd(prod)/mean(prod),
n_years = n()) %>%
filter(n_years> 10)
head(fao_summary)
## Source: local data frame [6 x 5]
## Groups: country [2]
##
## country uniq_fishery mean_log CV_prod
## <chr> <chr> <dbl> <dbl>
## 1 Afghanistan Afghanistan_Freshwater fishes nei 6.327915 0.5401854
## 2 Albania Albania_Angelsharks, sand devils nei 2.786145 0.9581526
## 3 Albania Albania_Atlantic bonito 2.348561 0.7635166
## 4 Albania Albania_Bleak 5.512833 0.5219357
## 5 Albania Albania_Bogue 5.174876 0.8579373
## 6 Albania Albania_Caramote prawn 3.928849 1.1270006
## # ... with 1 more variables: n_years <int>